Cell type-specific circuits of cortical layer IV spiny neurons.
نویسندگان
چکیده
Sensory signal processing in cortical layer IV involves two major morphological classes of excitatory neurons: spiny stellate and pyramidal cells. It is essentially unknown how these two cell types are integrated into intracortical networks and whether they play different roles in cortical signal processing. We mapped their cell-specific intracortical afferents in rat somatosensory cortex through a combination of whole-cell patch-clamp recordings and caged glutamate photolysis. Spiny stellate cells received monosynaptic excitation and inhibition originating almost exclusively from neurons located within the same barrel. Pyramidal cells, by contrast, displayed additional excitatory inputs from nongranular layers and from neighboring barrels. Their inhibitory inputs originated, as for spiny stellate cells, mainly from neurons located in the same barrel. These results indicate that spiny stellate cells act predominantly as local signal processors within a single barrel, whereas pyramidal cells globally integrate horizontal and top-down information within a functional column and between neighboring barrels.
منابع مشابه
Prenatal development of layer-specific local circuits in primary visual cortex of the macaque monkey.
Previous studies have demonstrated that axonal arbors specific for the four main cortical layers - 2/3, 4, 5, and 6 - develop precisely from the outset using activity-independent cues. In macaque primary visual cortex (V1), layer 2/3 is subdivided into layers named 2/3A, 3B, 4A, and 4B, and layer 4 is subdivided into 4Calpha and 4Cbeta. Individual neurons in V1 of mature macaques have axonal ar...
متن کاملmGluR5 in cortical excitatory neurons exerts both cell-autonomous and -nonautonomous influences on cortical somatosensory circuit formation.
Glutamatergic neurotransmission plays important roles in sensory map formation. The absence of the group I metabotropic glutamate receptor 5 (mGluR5) leads to abnormal sensory map formation throughout the mouse somatosensory pathway. To examine the role of cortical mGluR5 expression on barrel map formation, we generated cortex-specific mGluR5 knock-out (KO) mice. Eliminating mGluR5 function sol...
متن کاملFunctional diversity of layer IV spiny neurons in rat somatosensory cortex: quantitative morphology of electrophysiologically characterized and biocytin labeled cells.
Previous analyses of the spiny layer IV neurons have almost exclusively focused on spiny stellate cells. Here we provide detailed morphological data characterizing three subpopulations of spiny neurons in slices of adolescent rats: (i) spiny stellate cells (58%), (ii) star pyramidal cells (25%) and (iii) pyramidal cells (17%), which can be distinguished objectively by the preferential orientati...
متن کامل(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex
Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...
متن کاملMicrostructure of the neocortex: comparative aspects.
The appearance of the neocortex, its expansion, and its differentiation in mammals, represents one of the principal episodes in the evolution of the vertebrate brain. One of the fundamental questions in neuroscience is what is special about the neocortex of humans and how does it differ from that of other species? It is clear that distinct cortical areas show important differences within both t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 23 7 شماره
صفحات -
تاریخ انتشار 2003